
tt 71/ 7o

SIMULATION PROGRAMMING USING SIMSCRIPT II

Philip J, Kiviat*

The RAND Corporation, Santa Monica, California

The simulation described in this paper has been designed to
illustrate as much of SIMSCRIPT II as possible in a natural, problem-

oriented setting. While the program uses all of the language's
features that are important in simulation studies, it does not use
every SIMSCRIPT feature. A complete description is contained in
P. J. Kiviat and R. Villanueva, The SIMSCRIPT II Programming

Language, R-460-PR, The RAND Corporation, September 1968.

Even though the features illustrated are not exhaustive, the
example may still seem forced and artificial. This should not be
surprising, as it is a rare program that requires the full facilities
of any complex programming language. The example is an elaboration
of the job shop model of Chapter 3 of the SIMSCRIPT II report.**

The plan of the paper is as follows: the first section describes
a model of a system in general terms, presents some problems the model
has been designed to study, and places the rest of the paper in per-
spective. The next section contains a listing of the complete simula-
tion program followed by a set of typical data cards. The last
section works through the program section by section and, occasionally,
where it is warranted, statement by statement, explaining the syntax

and semantics of the statements.

Any views expressed in the paper are those of the author. Theyshould not be interpreted as reflecting the views of The RAND Corporation
or the official opinion or policy of any of its governmental or private
research sponsors. Papers are reproduced by The RAND Corporation as a
courtesy to members of its staff.

H. H. Harkowitz, B. Hausner and H. W. Karr, SIMSCRIPT - A Simula-tion Programming Lang uape, Prentice-Hall Inc., New York, 1963.

-2-

THE SYSTEM

The system under study is shown abstractly in Fig. 1. It is

a shop containing N production centers, each containing Mi identical

machines, and finished goods inventory storage area. The shop

produces P standard products for local sale and distribution, and

variations of standard products for local and export distributors.
Each product ordered travels through the shop, undergoing processing

at production centers according to standard routings, production

times and expediting procedures.

Special export Production f
orders center1 Production

"•• center 4 !etr Finished

Special local Production center Goods
orders center 2 Inventory

Typical product
Standard Product Production Production routing

orders center 3 enter N

Fig. I -- System Under Investigation

Each production center has an In-process inventory area where

products in process are stored if they cannot be worked on when they

arrive. To minimize the value of in-process inventory, the production

rules of'the shop remove partially completed products from production

center queues according to a "high value first" rule.

Table I shows the entity-attribute-set model of the shop and
its product line. These desLriptors explain the shop's static struc-
ture. Permanent entities are used for production centers and product

descriptions. Temporary entities are used for jobs and for Job pro-

cessing specifications.

The shop operates roughly as follows. When orders for standard

products come into the shop, a standard production sequence is copied

from an order book onto a job's production routing tag. The job is

sent to the first production center, where it is worked on if a

-3-

machine is free. If no machines are available, the job is put in

a work-in-process queue until a machine becomes available. When a

job finishes processing, its routing tag is examined, and the job

is either sent on to another processing center or to the finished

goods inventory.

The shop's dynamic structure is captured in two events -- SALE

and END.OF.PROCESS. Two other events, WEEKLY.REPORT and END.OF.

SIMULATION, print periodic system performance data and stop the

simulation. SALE is set up so it can be triggered both internally

and externally. When triggered internally, SALE represents a local

sale of a standard product. When triggered externally, SALE represents

either a local or export sale of a special order. Two external

event data tapes are provided to supply special order information.

In SALE, jobs are assigned to machines and the system state changes

to reflect such assignments. When a job is assigned to a machine,

an END.OF.PROCESS event is scheduled to terminate the processing,

make the machine available for another job, and pass the job on

for additional processing or for shipment.

The simulation model is designed to. determine the number of

machines needed at each production center to provide "adequate"

customer service. To study the effects of varying the number of

machines in each center, a TALLY statement looks at the length of

time jobs spend in the shop, and an ACCUMULATE statement looks at

the waiting lines that build up at the production centers. Some

number of machines will be chosen that balances the cost of degraded

customer sdrvice with the costs of additional machines.

The program listing that follows has been written and annotated

to make it as readable as possible. Statements that are not clear

from the program itself are discussed in the section following the

listing.

4-

Table 1

ENTITIES, ATTRIBUTES AND SETS OF THE SHOP MODEL

Set or

Entity Attribute Comment

PRODUCTION.CENTER NUMBER.IDLE The number of idle machines in

The shop has N a production center

production centers. QJEUE Each production center owns a
collection of in-process prod-
uc ts.

PRODUCT SALES .FREQUENCY Characterizes the frequency with

The shop produces which orders for a standard
P different prod- product arrive at the shop.

ucts. NAME Identifies a product

STRUCTURE Each product has a list of
standard operations that have
.to be performed to produce it-

JOB VALUE The dollar value of a job

Each order for a DUE.DATE The time a job is promised to
product is called a customer
a job. ARRIVAL.TIME The time a job is ordered

EXPEDITE.FACTOR The degree to which a job's
processing can be speeded up
at a production center.

ROUTING A list of production centers
through which a job has to
be processed

FINISHED.GOODS. Jobs can be placed in finished
INVENTORY goods inventory awaiting ship- j

men t
THE SYSTEM FINISHED.GOODS. Jobs are placed in finished
The shop INVENTORY goods inventory if finished

before their due date.
OPERATION MACHINE.DESTINED The production center at which

A task performed by a job must be processed.

a production center I
in producing a prod-

uc t.
CODE A number representing a part-

icular processing task.

PROCESS.TIME The time it takes to perform a
processing task

STRUCTURE The standard parts list on which

different operations appear

ROUTING The processing operations re-

_uired forgaXarticular inb

SAMPLE SIPSCRIPT 11 SIMULATICN PROGRAM
A JOR S14CP SIMULATION

PRtAMIeLl
NORMALLY MODE IS INTEGER AND CIMENION IS 0

PERMANENT ENTITIES.
EVLRw PROOLCI HAS A SALES.FRECUENCY ANC A NAME AND OWNS A %TRu~tCf4E

CEFINE SALES.FREQLJENCY AS A REAL RANDOM LINEAR VAAIABLE
DEFINE NAME AS AN ALPH4A VARIABLE

EVI:RY PROOUCTtPROCUCT HAS A PRODUCT.SALESi*/2)
EVERY PIOCUCTICN.CENTER HAS A IMAX.tN.GUEUE(I/2),MAX.QUEUEI2/21) IN ARRAY to

A IWNUMII/?)t NNUM42/21) IN ARRAY 2, A WSUM, A MSUP, A NUMBEReITILE
AND OWNS A QUEUE

DEFINE NUPBER.IOLE AS A VARIABLE MONITORED ON THE LEFT

TEMPPRARV ENTITIES
EVCRY JCS HAS A VALUE IN %ORD 2. A CUE.DATE9 AN ARRIVAL.IIME.

AN EXPECITE.FACTOR FUNCTICN, MAY BELONG TO A QUEUE, OWNS A ROUli&N4
AND MAY BELONG TC THE WAITING.SEI

DEFINE EXPECITt.FACTCR AS A REAL FUNCTION
DEFINE VALUE, DUE.DATE AND ARRIVAL.TIME AS REAL VARIABLES
DEFINE ROUTING AS A FIFO SET WITHOUT P AND N ATTRIBLIES
DEFINE CUEUE AS A SET RANKED BY HIGH VALUE

EVERY OPERATICN HAS A (COCEII/2) ANC MACOHINE.DESTINEIJE2/2) I IN WORn I
ANT) A PROCESS.TIME AND BELONGS IC A STRUCTURE AND A ROutING

Of-FINE STRUCTURE AS A SET RANKED BY LOW CODE wITHCUT m ATTRIBUTE
AND WITHOUT R ROUTIhES

DEFINE PRCCESS.TIME AS A REAL VARIABLE

EVI:NT NCTICES INCLUDE kEEKLYJREPCRT
EVERY SALE HAS A PRCDUCTjTYPE, A PRICE ANC A PRIORITY

DEFINE PRICE AS A REAL VARIABLE
EVERY ENC.CFePROCESS HAS AN ITEM ANC A PRCDUC(R

FREAK SALE TIFS BY HIGH PRICE THEN BY LOW PRIORITY
EXTERNAL (VENTS ARE ENC.OF.SIMULATION AND SALE
EXTERNAL [VENT UNITS ARE LOCAL.SALES AND EXPORT.SAlt-)
PRICRIIY CORER IS END.CF.PROCFSS, SALE, WEEKtY.RFPCHT AND E*4U.UHl.SIMUl- H(N

b~t-CRE FILING AND REMCVING FRCM QUEUE LALL QUEUE.0HECK
OEFORI: DESTROYING JCB, CALL STAY.TIME

DEFINE STAY AS A REAL DUPMM VARIABLL
TALLY AVG.STAY AS THE WEEKLY MEAN, VAR.STAY AS THE ottKLY VARIANCF . SuP.STAY AS

THE BEEKLY SUM,9 SUM.SQUARES.STAY AS THE WEEKtLY SUM.CF.S%.UARLSt AND
NlJP.STAY AS THE WEEKLY NUM4BER OF STAY

ACCUMULAIF WSLM AS THE WEEKLY SUM, WNUP AS THE WfL.KLI NUM9'ER, AVG.0itk~ AS THE
WEEKLY MEAN, MAXeQUEUE AS THýE WEEKLY PAXIMUP ANUi FRICIO Ti: WS~ IY 1)
AS THE WEEKLY HISTOGRAM OF N.QUEUE

ACCUMULATE: NSLP AS THE MONTHLY SUP, 14NLP AS Tht MLNTHI.Y NdU'RCRe AVG'.IN.QtUIUE ASý
THE MONTHLY MEAN, MAX.IN.GbUFU AS THU MLKT141Y MAEimum Of. Nd.6ki.UF

THE SVYSTEP OWN4S A FINIS14ED.GOODSINVENICRY
DIFIKE FINISHED.GECDS.INvI:NTORY AS A %tt RANkII Vv L I.DAIE
UtFINIl LLAL 1C MEAN OFFiNt I qj,KqL,M AND N AS %AVO 1) INTI-(.ER VARIAh I S
I3FFINt WEEK Tfl MEAN OHCURS.VS? HOURS
Cit-IKE PRILAITY.FPEC.UENCY AS A 2-OIMtk'ýICNAI A14RAV

CEFItd TITLE AS A TEXT VARIABLE
CEFI#%t WEEK.CCUNTER AND TAPEJFLAG AS INTEGER VARIABLES
CtFlhtE AVERAGE AS A REAL FUNCTICh wITI4 I ARGUMENT
E14C

PA IN
OIKTIAII1ES PERFORM INITIALIZATILON
LET eilotWIN.VaOTI&ACE4 START S1IMULATION

Of PERFCRP NEXT EXPERIPENT
FOR EACH JOB IN FINISHEC.GOODS.INVENTORYO 00

REMOVE THE JOS FROM FINISHED.GOODS*INVENTORY
DESTROY THE JCS

LCOP

FOR EACH PROOLCTION.CENTER,
FCP EACH JOB IN QUEUE, 00

FCN EACH OPERATION IN ROUTING, 00
R*MCVE THE OPERATION FROM ROL'IN.6
DESTROY THE CPERATIC%

L COP
REMOVE THE JO6 FROM QUEUE
LESYRCV THE JOS

LCCP

FCR EACH PRODUCT, CC
fCR E:ACH CPIERATION IN STRUCTURE, CO

REMOVE THE CPERArIOh FICM THE STRUCTURE
DESTROY THE OPERATION

LCOP
AISC FLO FACH RANCOM.E IN SALES.FREQUENCY, DO

RFMOVE THE RANOOM.E FROM SALES.FREQUENCY
CLSTRCV THE RANDOW;E

REIFA'SE NAPE, F.;STAUCTLREqL.STRtLCTURE9 N.STRUCrURE f.SALES.FRtcuENC~v
PR('CUCI.SALLS, NUPBER.IOLEt F.GUELIEv L.QUEUE, N.CUEUE9 P~AX.IN.QUEUE,
PAX.gUFLE, HSUPO PSUM, WNUFI MMUP

REIEASk PRICRITY.FREQUENCY
LRASE TITLE

RESET TOTALS CP STAY
FUNd fALH POCOLCTICN.CENTER. RESET TOTALS CP N.QUEUE

LET bttK.CCUNTE~A*
%RITE AS heeeeuI
LET TAPEJFLAGsO

Of R~tlSt EXTERNAL Evt1NTS IN NEXT EXPERIMENT
NEWINI. LCCAL.SALES AND EXPORT.SALES

STVP ENO

-7-

I4CLIINE FOR INITIALIZATION
LCCAL
CEFINE Pf 10 PEAN PRICRITYi.FRI:CUENCY
MEINE- SF TO PkAN SALES.FRECUENCY
CEFINL CHECK AS AN ALP14A VARIABLE
Lfl Erk.V-1
INPLT TITLE

* IF ECF.V*29 PRINT I LINE AS FCLLOWS
ENC OF CATA M4T

STOP
* ELSE

REAC N.PRCCUCTION.CENTIR
CREATE EVERY PRODUCTION.CENTER
FuN EACH4 PRODUCTICN.CENTER, REAC NIMPBER.ICLE.

REAC I%.PRCOUCT
CREATE EVERY PRCoCrC
RESERVE PRI(3RITV.F~fQU.EhCwI*.*) AS N.PRODUCT bY
FCR EACH PRODUCT, CC

REAC NAPE
REAC SALE-S.FREUUtNL.Y
RESERVE PRICRITY.FREQUENCYIPRCOUCT9*1 Aj PRCC.:r-
FOR tat TO PR(!DUCT, REAC PRICRITY.FREQJUfNLY(f)OVCTeI)
UNTIL PODE IS ALP14A, 00 THIS

CREATE AN CPERATICN
FILE THE OPERATION IN STRUCTURE
READ CCDE, N4ACHINE.DESTINEO AND PROCES .TIME

LOOP
SKIP I FIELD
CAUSE A SALE IN SF HOURS
LET PRODUCT.TYPE-PRODUCT
LET PRicE*PRccucr*RANDOP.FlIl1
LET PMIORITYaPFIPROCUCT# TRUNC.FIPRICE)*IJ

LCCP

REAC LCCAL.SALES, EXPCRT.SALES AND SAVE.TAPE

REAC PCNTlw, DAY AND YEAR CALL ORIGIN.RIPONTH.oAY ANC YEAR)

REAC C14ECN IF CHECK ECUALS "OK', CALL REPORT RETURN
OTHERWISE PRINT I LINE AS FOLLOWS

EITH4ER TOO PUCH DATA OR DATA HAS BEEN READ INCORRECTLY
STOP ENO

EVENT SALEIPROOUCTPRICE*PRIORITY) SAVING THE EVENT NCTICE
CEFINE SF TO PEAN SALES.FREQUENCY
LOCAL
IF SALE 1S EXTERNAL, READ PRODUCT, PRICE AND PRIORITY AS it 10,1 5, ()(10.11. 1 5
REGARCLESS ADD I TO PRCDUCT.SALES(PROOLJCT* TRUNC,FIPRICE#I.))
CREATE A JOB

LET VALUEuPRICf
LET DlE.OATEUTIPE.V # PRICE *PRIORITY
Lu-1 AftRIVAL.IINEUlIINE.V

IF SALE IS INTERNAL,
FOR EACH PIECE OF STRUCTURE, FILE PIECE IN ROUTING GD TO JOB

as PROCESS SPECIAL ORDERS

-8-

rm-FmwISE UNTIL MCDE IS ALPHAq CO THE FCLLOWING*...
REAC N
FOR EACH PIECE IN STRUCTURE WITH CCOEIPIECE) No
FINE THt FINST CASE# IF NONE GO TO LCOP
FILE PIECE IN ROUTING

GLCCPS LOOP
Jces' NOWm ATTENO.0TC.JCe
IF SALE IS EXTERNAL. DESTROY THE SALE RETURN
CylFEalISE.O.i..

SCIEIDULE THE SALE(PRCOUCT, PROOUCTORANOCW.193 PRIORI TY.FREQUENCYI PRODUCT,
TRUNC.FIPRICEI*l) IN SF HOURS

R4ETURN ENDj

AOUTINI: TC ATTEF4O.TC.JOI
LfIT PRcI2uL fION.CENTERaP~ACH INE.OES TINED IF. ROUT INGIJC8 J
it NUWBER.IDLE IS PCSITIVE9

SUBTRACT I FROM NUMRER.IOLE PERFORM ALLOCATION
RE [URN

cTHEpbbISff FILE JOB IN QUEUE RETURN

RCLTiNI- F(rR ALLOCATION
RflPCVI 11-1 FIRST CPERATICN FROP THIS ROUTING
SCIHECULE AN ENOO.CF.PROCESS GIVEN JOB AND PRODUC T ION.C ENTER IN

Ppc(CksS.TIPEeEXPEOITE.FACTOR HOURS
RI TLRl ENO

R01I1iN kXPI:OI!:.F-ALTrR
if liot.v IS GREATER THAN OUE.CATE RETtEN wiTt- 0.5 ELSE
AI4TI.NN Will- MN.hFEICUE.CATE-TIME.V)/PROCESS.TINE,lI

tyuN i NO.fF.PROCE-SS GIVEN JOB AN4D PRflOUCT ION. CENTER
it 1(1.ICI EMPPY, Ir DUE.UAJE <= TIPE.Vo

DESTROY THIS JCB GO TO PC
ElSL FILE THIS JOB IN FINISHtD.GCCDS.INVENTORY GO TO PC

WtiEI4 SE CALL ATTENI).TC.JOB

Altc I TO NUNSER.IUjif RETURN

(151 mkooVk THE FIRS! JOB PROM QUEUE
PERFCRP ALLOCLAIICN RIIURN
ENE

Fvthi I-fiR WI:EMLY.MEPOII SAVING THE EVFNT NOTICE
lot .i' I , ,01 1 th~is WIFELY.1aPCRIT IN I WEI x

hl I. I U .kR.LUNE

III kk#&KLV ICIALS CF SWAY

FOR EACH PRODUCTION.CENTER, RESET WEEKLY TOTALS OF N.CUEUE
IF NOO.F(WEEK.COUNTER,#I1O, FOR EACH PRODUCTICN.CENTER, RESET MONTHLY TOTALS

OF NJQUEUE ELSE
RETURN END

EVENT FOR END.OF*SINULATION
FOR 1=1 Tr EVENTS.Vt FOR EACH NCTICE IN EV.SfI), D0

REMOVE THE NOTICE FROM EV.S(II
DESTROY THE NOTICE

LOOP
NOW REPORT
LIST PROOUCT.SALES
RETURN END

ROLTINE FOR QUEUE.CHECK GIVEN ENTITY AND I
LOCAL
IF I LE I LE N.PRODUCTION.CENTERv RETURN
CTbfERWSE.., PRINT I LINE WITH I AS FOLLOWS

STOPPED TRYING TO REFERENCE CUEUE(*)
TRACE STOP END

ROUTINE FOR STAYeTIME GIVEN JOB
LET SIAYvTIME.V - ARRIVAL.TINE(JO8)
RETURN END

RCLTItL TC TRACE
LOCAL
IF FINISHEO.GCCOS.INVENTORY IS EMPTY, GO AROUND
ELSE FOR EACH JOB IN FINISHED.GOODS&INVENTORY UNTIL OUEDATE > TIME.V, DO

REMOVE THE JC8 FROP FINISHED.GCODS.INVENTORY DESTROY THE JOP
LCOP

*AROLNCO
GC TC END.CF.PROCESS, SALE, WEEKLY.REPORT AND ENO.OF.SIMULATION PER EVENT.V
lNEC.C•F*PRCCESSl WRITE ITEM, PRODUCER, TIME.V AS "ITEM", I s, "STOPPED-,

"PROCESSING ON MACHINE", I S " AT TIML8"9O(1O,31, 1
RETURN

ISALEI WRITE TIME.V, PRODUCT.IYPE, PRICE AND PRIORITY AS "SALE OF TYPE", I 3,
" PRODUCT AT TIME.", D(10931, 9 FOR S", 016 21, 9 PRIORITYf", 1 3v
I RETURN

OLEEXLY.REPORTO
'ENC.CI.SIMULATIONI
RETURK
ENL

LEFT HCUTINE NUMBER.ICLE4M)
CEFINE J AS A SAVED, 2-CIMENSICNAL ARRAY
CEFINF K AS A SAVFC, I-CIMENSICNAL ARRAY
ENTER WITH N
IF TAPEJFLAGnO, LET TAPE.FLAG"1

-10-

RELEASE J AND K
RESERVE KI*0 AS N.PRODUCTION.CENTER
RESERVE Jf*v*l AS 100 BY NePRODUCTION.CENTER

REGARtLESS ADO I TO RIP)
LET JIKXI),P)sN
If K(flIaIOO WRITE P AS I 3 USING SAVE.TAPE

FOR f-I TO L00, WRITE JIIP) AS 1 3 USING SAVEoTAPE
WRITE AS / USING SAVE.TAPE

RILAmrLESS POVE FROM N
RITURk END

RCLTINI TC REPORT
LULAL
IF TIPEJVzO,

START NEW PAGE "'ANO'' OUTPUT TITLE
SKIP 2 OUTPUT LINES
PRINT 3 LINES AS FCLLOWS

P ROa uC T u A T A
NAPE SALES FRECUENCY PRODUCTION SECUENCE

PROS. VALUE CODE CNTR TIE
FOR EACH PRODUCT# DO

LET I*F.SALES.FRECUENCY
LET J-F.STRUCTURE
PRINT I LINE WITH NAME, PROR.AII), RVALUE.Aili, COOEIJ),

PACHINE.DESTINEDtJ) AND PROCESS.TIMEIJ) THUS

IF I1-09 LET IS.SALES.FREQUENCY(I) ELSE
IF J".O, LET J&S.STRUCTUREIJ) ELSE
IF 1.0 AND J=O, GO TO 'LOOP° ELSE
IF I-.O AND JaC, PRINT I LINE WITH PROB.AIi) AND RVALUE.A(II THUS

ELSE IF 10 AND J-0. PRINT I LINE WITH CODEIJ)v PACHINE.DESTINEDIJ),
AND PROCESS.TINEIJI THUS
.. $0

EL3 IF 14w0-Jv PRINT I LINE WITH PROB.A(I11 RVALUE.A|IIt CQOEtJIv
NACHINE,DESTINEDIJ) AND PROCESS.TIMEIJ) THUS

§LCOP' LOOP
SKIP 2 OUTPUT LINES
PRINT 2 LINES AS FOLLOWS

P R C 0 UC T I C N C E N T E R 0 A T A
CENTER NUMBER OF MACHINES

Ftw EACH PRODUCTICN.CENTER9 PRINT I LINE WITH PRODUCTION.CENTER AND
NUPSER.IDLE THUS

SKIP 2 OUTPUT LINES
PRINT 2 LINES AS FCLLOWS

INITIAL EVENTS
EVENT TYPE TIME

FUR 1-1 TO EVENIS.V, FOR EACH J IN EV.S(IIt
PRINT I LINE WITH I AND TIME.All) THUS

MEGAR4CLESS.....

START NEW PAGE
PRINT I LINE AS FCLLChS
PRINT 3 LINES LIKE THIS

W E E K L Y R E P C R T

i

-11-

PRINT 2 LINES WITH AVG.STAY AND VAR.STAY AS FOLLOWS
JOB STAY STATISTICS ARE: AVERAGE STAYa *j**

VARIANCE o
SKIP 3 OUTPUT LINES
BEGIN REPORT
BEGIN HEADING
PRINT 2 LINES AS FOLLOWS

PRODUCTION CENTER GUEUEING REPORT
CNTR AVG. QUEUE MAX. QUEUE

ENC 9°HEAOING
FCR EACH PRCOUCTIONoCENTERv PRINT I LINE WITH PRODUCTION&CENTERv

AVG.CUEUE AND MAX.QUEUE THUS

END so REPORT
PRINT I LINE WITH AVERAGEIAVG.QUEUEI*)l LIKE THIS

CVERALL AVERAGE QUEUE LENGTH OF ALL QUEUES LS *.*
SKIP 3 OUTPUT LINES
FOR EACM PRODUCTION.CENTERs DO

BEGIN REPORT PRINTING FOR Iml TO 25 IN GROUPS OF 5
BEGIN PEADING

PRINT I LINE WITH PRODUCTION.CENTER LIKE THIS
HISTOGRAM OF QUEUE LENGTH FOR PRODUCTION CENTER **
END of HEADING
PRINT I LINE WITH A GROUP OF FREQIPRODUCTION.CENTERJ2) FIELDS THUS

ENC :9
REPORT

IF PC0.FfWEEK.COUNTEIq4I1-Ow RETURN
CTHERkISE..4 START NEW PAGE
PRINT I LINE AS FOLLOWS

M ON T H L Y R E PC R T
SKIP 2 OUTPUT LINES
SKIP I OUTPUT LINES
BEGIN REPORT
eEGIN HEAOING
PRINT 2 LINES AS FOLLCWS

PRODUCTION CENTER QUEUEING REPORT
CNTR AVG. QUEUE PAX. QUEUE

ENC IGHEAOING
FOR EACH PRODUCTION.CENTER, PRINT I LINE WITH PROOUCTION&CENTER*

AVGdiN.QlUEUE AND MAX. IN.QUEUE THUS

END "' REPORT
PRINT I LINE WITH AVERAGEIAVG. INCUEUEI*)) LIKE THIS

OVERALL AVERAGE QUEUE LENGTH OF ALL QUEUES IS 5.55

RETURN
ENC

ROLTINE FOR AVERAGE GIVEN ARRAY
LCCAL
DEFINE ARRAY AS A I-DIPENSICNAL ARRAY
FCR JxI Tn DIP.FIARRAYISt)) COMPUTE M AS THE PEAN OF ARRAYIJ)
RETURk WITk M
fNC

4L

-12-

SAPPLe DATA FOR SEVERAL JOB SHOP EXPERIMENTS USING THE LEVEL K# SECTION 5.05
Joe SHCP SIMULATION PRCGRAM*J...TITLES, AS SHOWN, CAN EXTEND OVER SEVERAL CARDS
ANC ARE ENDED BY A MARK.V CHARACTER *
5 IC 10 5 5 3
3
TOP C.25 10.0 0.50 15.0 0.15 20.0 lo.o 25.0
1 i 1 C.2 2 2 0.5 3 4 0.3*
vCyC C.10 3.7 0.28 5.6 0.39 1.2 0.60 9.2 0.61 10.6 0.95 15.2

1.00 20.0*
I 2 15 1 1.2 16 3 0.8 t? S 0.2 to 2 LS'
(iLL 0.1 1.0 0.2 2.0 0.2 3.0 0.4 6.C 0.1 5.o
1 2 3 20 5 4.2 21 4 5.6 22 1 3.2 23 5 2.000

1 2 1
I 1 1968

Ci
1I•S IS A TITLE CARD FOR THE SECOND SIMULATION EXPERIMENT OF THE SERIES
rATA CARDS FOR THIS EXPERIMENT WILL HAVE THE SANE FORMAT AS THOSE OF THE
PREvIruS EXPERIMENT ANC WILL END WITH AN nOK" CARD 0

THE FCLLOWING CARDS ARE SAMPLES OF THE DATA CARDS PUNCHED FOR ONE OF THE TWO
EXTERNAL EVENTS TAPES .. 4j0oo 0.. THIS IS JUST A SAMPLE FROM THE TAPE

SALE 1/2/68 12 CC 2 1.98 1 15 1T 18 *
SALF 1/2/68 13 25 1 0697 1 1 2 3 *

SALt 1/1/66 01 30 2 1.50 2 L6 I? le 0
SALE 1/3/68 C1 00 3 2050 1 20 22 23 *

ENC.LF.3SIMULAFION 9/1/69 12 00 5

-13-

CCO4WNTS ON THE SIMULATION PROGRAM

The program is arranged functionally and is discussed as it

appears. The order of the program is preamble, main routine,

initialization, events and routines of the simulation model, routines

for monitoring, debugging and analysis.

Preamble

The preamble is divided into seven sections: permanent entities,

temporary entities, event notices, event control, debugging, analysis

and miscellaneous declarations. Most simulation programs can be

organized this way.

One compound and two simple permanent entities are declared.

The special features of each are these:

PRODUCT has a RANDOM attribute and an ALPHA attribute, each

requiring definition in a DEFINE statement.

PRODUCT.SALES, the single attribute of the compound entity

PRODUCT,PRODUCT, is intrapacked to conserve storage space.

PRODUCTION.CENTER has two pairs of attributes that are packed in

the same array, and one attribute that is monitored. The

packed attributes use field-packing, equivalence and array

specification. The monitored attribute requires an additional

DEFINE statement.

PRODUCT.SALES could just as easily have been defined as a global

array or as a two-dimensional system attribute. As a global array

though, it could not have been packed; as a system attribute it

would not be eligible for implied subscripting.

Two temporary entities are declared. The special features of

each follows:

JOB has one attribute placed in a specific word in its

entity record, and has a function attribute. The function

attribute requires a DEFINE statement to declare its mode.

Two sets in which a JOB participates have their implied

properties modified by DEFINE statements.

Two attributes of OPERATION are packed in the first word of

each entity record.

-14-

A set to which an OPERATION belongs has its removal routines

deleted by a DEFINE statement.

Three event notices are declared. The special features of each

are these:

WEEKLY.REPORT has no attributes, and neither owns nor belongs

to sets other than the standard one defined for all event

notices.

One event,SALE, breaks ties among competing event notices

through a BREAK TIES declaration. The other internal

events break ties, if they occur, on a first-come, first-

served basis.

Two external event classes, END.OF.SIMILATION and SALE, are declared.

Two input devices are declared as suppliers of external event triggers.

The priority order of the four event classes is declared in a PRIORITY

statement.

Two BEFORE statements are used. Each states that a certain

routine is to be called before a specified action takes place. The

arguments of these routines are not stated, but implied.

One TALLY and two ACCUMULATE statements are used. The special

features of each follow:

The TALLY statement compiles statistics for a DUMMY variable,

which is declared in a separate DEFINE statement.

All of the statistical counters used in the TALLY and

ACCUMULATE statements are defined so they can be released.

If they were not named, they would be given local names

such as A.1 and A.2 by the SIMSCRIPT 11 compiler.

FREQ is a two-dimensional array. The first dimension is

an entity index. The variable for which it accumulates

a histogram is an attribute of PRODUCTION.CENTER. The

second dimension is the histogram index and is an

integer between 1 and 26.

The remaining statements are:

Declare a system owned set.

Use DEFINE TO MEAN statements to create shorthand notation.

Declare four global variables: a two-dimensional array,

two INTEGER variables, and a TEXT variable.

-15-

Declare a function and specify the number of arguments it

must always have.

Main Program

The main routine has three functions: it initializes the model

so simulation can start, it transfers control to the timing routine

when initialization is complete, and it resets the entire system to

an "empty" condition at the end of a simulation run so another

experiment can begin.

Initialization takes place in the routine INITIALIZATION. After

Initialization, the SUBPROGRAM system variable BETWEEN.V is set to

the routine name 'TRACE', indicating that this routine is to be called

before each event is executed. Simulation begins at the START

SIMUJLATION statement that removes the first event from the events

list and transfers control to it. Simulation proceeds until an END.OF.

SIMUILATION event occurs. This event, aside from its obvious task of

reporting the results of the simulation experiment, empties the events

list sets. When END.OF.SIKTLATION returns control to the timing

routine, the lack of scheduled events causes control to pass to the

statement after START.SDIUiATION. In many simulations this will be

STOP. In this example, it is the first of many statements that

release and destroy all permanent and temporary entities. After these

statements have been executed, all the memory structures set up by the

previous experiment have been erased.

To perform this erasure, the system set FINISHED.GOODS.INVENTORY

and the sets owned by the permanent and temporary entities are emptied

and their members destroyed. Finally, all attributes of permanent

entities are released. Special features to notice are these:

The PRODUCTION.CENTER loop in which operations owned by

jobs owned by production centers are successively

removed and destroyed.

The RANDOM variable SALES.FREQUENCY is treated as a set

when it is emptied.

All permanent entity attributes, including set pointers

and statistical accumulators, are released.

-16-

In many programs, so extensive a reinitialization process is not

necessary. For example, it is usually sufficient to zero out all

attribute values and empty all sets. This example has been written

to illustrate what seems to be the worst case. When single simulation

runs are made and no reinitialization is necessary, the initialization

routine can be released and its space regained for array and entity

storage. The following routine shows how this is done.

Add to the preamble:

DEFINE INITIALIZATION AS A RELEASABLE ROUTINE

Use this routine:

MAIN

PERFORM INITIALIZATION

RELEASE INITIALIZATION

START SIMULATION

STOP END

Program Initialization

INITIALIZATION starts with some declarations. The first takes

advantage of the DEFINE TO MEAN statement of the preamble to define

some local INTEGER variables I, J, K, L, M and N. The next two

statements are local DEFINE TO EAN declarations that create short-

hand notations for two lengthy variable names. The last declaration

describes a local ALPHA variable that verifies whether or not all

input data have been read.

Since a mistake may have been made in setting up a simulation

run, EOF.V is set to 1 to give the program control over the actions

taken when the end of the input data file is reached. If an end-of-

file is encountered when reading TITLE, EOF.V is set to 2 and

this fact is picked up in the following IF statement. A sequence

of simulation experiments can also be stopped this way. When all

the data for a sequence of runs are exhausted, these statements

will stop the program.

-17-

The INPUT statement reads characters from the current input

unit READ.V until an asterisk, the MARK.V default symbol, is reached.

A typical simulation TITLE card might be:

SIfULATION RUN NO. 1 JOB SHOP WITH 10 CENTERS *

If some symbol other than * is to be used as a TEXT terminator, a

statement such as LET MARK.V="?" is put at the head of INITIALIZATION.

A value that is the number of production centers is then read

and used to reserve the arrays that hold the attributes of PRODUCTION.

CENTER. This value is also used to read in the number of machines in

each production center (which are all idle when simulation begins.)
A similar process then takes place for PRODUCT. It is more

complex in that a richer variety of data structures are associated

with PRODUCT than with PRODUCTION.CENTER. The data structures are

the following:

PRIORITY.FREQUENCY--a "ragged table" whose rows are "sized"

dynamical ly.

SALES.FREQUEN4CY--a RANDOM variable whose sampling data is

read in a standard format.

STRUCTURE--a set with OPERATIONS as members.

Also, an initial local SALE for a standard product must be

scheduled for each product type. In scheduling these sales, the

PRICE of each SALE is a random variable between 0 and the product

type, e.g., a type 3 product can be sold for between $0 and $3, and

the PRIORITY assigned to a sale can be determined by a random draw

from the PRIORITY.FREQUENCy table.

At the end of initialization the numbers of the input devices
for the LOCAL.SALES and EXPORT.SALES external event units are read.

This allows devices to be changed between simulation runs. Finally,

the ORIGIN.R routine is invoked to set the simulation calendar so
that calendar dates can be used on the external event tapes.

If the last data field read is not the character string OK, the

run terminates with an error rissage.

-18-

Events and Routines of the Simulation Model

The event SALE is written to react properly to both internal

and external event triggers. The event creates a job, determines

its routing through the shop, and starts it in its processing sequence.

If the sale is internal, a new order is scheduled for the same product

some time in the future.

The EVENT dtatement defines SALE as an event routine with three

input arguments. It also declares that when a SALE event notice is

selected as the next event, the first three programmer defined

attributes of SALE are to be assigned to the local variables,

PRODUCT, PRICE and PRIORITY, and that the event notice is not to be

destroyed. An important point to note here is that PRODUCT, PRICE

and PRIORITY are local variables; they are different from the variables

defined as attributes of the event notice in the preamble.

The first two statements are local declarations that we have

seen before. The third statement is the one that allows SALE to

be used with both internal and external event triggers. It says:

if SALE has occurred externally, read three data items, otherwise

do not read any data. Regardless of how the event was triggered,

values get assigned to PRODUCT, PRICE and PRIORITY.

The next statement adds I to an element of PRODUCT.SALES, counting

the number of times particular products are sold at different prices.

The next section of code creates a JOB entity and assigns valves

to its attributes. The JOB is the entity that will flow through the

shop, and will represent the sale from now on. If SALE is triggered

internally, it is a sale for a standard product, and the standard

sequence of operations for producing that product is transferred from

STRUCTURE(PRODUCT) to ROUTING(JOB). Notice that implied subscripts

are used in the program for both STRUCTURE and ROUTING. If the SALE

is triggered externally, it represents a possible special order. As

special order operations are subsets of operations that produce

standard products, data are read that select a subset of operations

for producing the order and store it in the JOB routine set.

-19-

With this, the task of SALE is almost completed. The now completely

specified JOB is started through processing by the routine ATTEND.TO.JOB.

After this routine deals with the job, it returns to SALE where

arrangements are made for the next SALE. If the SALE just processed

was triggered externally, the event notice is destroyed and control

returned to the timing mechanism. The next external event will be

selected automatically by the timing mechanism from the external

events tapes. If the SALE was triggered internally, the event notice

is reused to schedule another sale for this same product, with a

different price and priority. The time at which this sale is to

occur is determined by a random sample from the RANDOM variable

SALES.FREQUENCY(PRODUCT); again implied subscripting is used.

ATTEND.TO.JOB uses the routing of the current JOB to select

the production center in which the first operation is to be performed.

The first statement in ATTEND.TO.JOB is important as it illustrates

several basic operations in SIMSCRIPT II programnming. First, it

illustrates the use of a set pointer to select a set member; F.ROUTING

(JOB) picks out an entity identification number. This identification

number is then used with an attribute of the entity type it represents

(OPERATION) to determine a value; MACHINE.DESTINED(R.ROUT.NG(JOB)) is

the production center number the first operation requires. This

number is assigned to PRODUCTION.CENTER so that implied subscripting

can be used later on in the program.

After the production center is determined, NUMBER.IDLE(PRODUCTION.

CENTER) is examined to determine whether a machine is available in this

production center to process the job. If a machine is available, it

is allocated to the job by first subtracting I from the idle machine

counter and then calling the routine ALLOCATION. If a machine is

not available, the job is filed in a QUEUE owned by the

production center. When a machine becomes free at some later date,

the QUEUE will be examined and a job removed for processing. All

the time a job spends in the shop in excess of its actual processing

time is spent in queues belonging to different production centers

and in finished goods inventory.

-20-

ALLOCATION knows that it is given a certain job because the

that the identification number of this job is in the global variable

JOB. It removes the first operation from the ROUTING of this job,

and schedules an END.OF.PROCESS event. The job identification

and the production center identification are assigned to the first

two attributes of this event notice. The event is scheduled for a

standard time, PROCESS.TINE(OPERATION), modified by a factor

that depends upon the current time and the time the job was

promised to the customer. Note the use of implied subscripts in

communicating between the routines ALLOCATION and EXPEDITE.FACTOR,

and within the routines themselves.

EXPEDITE.FACTOR looks at the DUE.DATE of the current job and

compares it with the current simulation time. If the job is late,

EXPEDITE.FACTOR returns a value of 0.5 to shorten the processing time

of the operation. If the job is not late, a value between 0 and 1 is computed,

which depends upon the time remaining before the job will be late

and the processing time of the current operation. Again

implied subscripts are employed.

The event END.OF.PROCESS does two things, it takes care of a

job that has just finished processing at a production center and it

takes care of the production center. First it deals with the job.

If the ROUTING of the job is empty, all its operations have been

completed and it can pass from the shop. If the job is finished on

time, or is late, its entity record is destroyed. If it is early,

it is filed in FINISHED.GOODS.INVENTORY where it stays until its

DUE.DATE. If the job is not completed, the routine ATTEND.TO.JOB

assigns it to its next operation. Note the use of the REMOVE state-

ment in ALLOCATION that makes this assignment automatic.

It is important at this point to understand the flow of control

between events and routines. The reader is advised to make up some

data, or use the data at the end of the program to trace several

jobs and their flow through the shop.

After disposing of the job, END.OF.PROCESS deals with the produc-

tion center. If no jobs are awaiting processing in the production

-21-

center QUEUE, the machine just released is returned to the idle state.

If jobs are waiting, one is selected according to the queue's priority

rule and processing is started on it.

This completes the routines and events that are directly involved

in the shop simulation. The remaining routines and events deal with

preparing reports, stopping the simulation, collecting data and

monitoring the model.

Events and Routines for Monitoring. Debugging and Analysis

The event WEEKLY.REPORT occurs periodically. It keeps track

of the number of simulated weeks that have gone by, resets counters

that are used for collecting periodic statistical information, calls

on a report routine and reschedules itself. The feature of interest

in this routine is the use of the word WEEK in the RESCHEDULE state-

ment. This word was defined to mean *HOURS.V*7 HOURS in the program

preamble; the RESCHED'JLE statement is therefore compiled as RESCHEDULE

THIS WEEKLY.REPORT IN 1*HOURS.V*7 HOURS. When declarations such as

this are made, care must be taken that the defined word is not used

inadvertently in another context, e.g. there can be no variable,

routine, label or set named WEEK in this program.

The event END.OF.SIMULATION is triggered externally and has as

its main purpose the termination of a simulation run. It does this

by emptying the events sets so control will pass to the statement

after START SIMULATION when END.OF.SIMULATION returns control. In

addition to stopping the simulation, END.OF.SIMULATION calls REPORT

and lists an array.

The next two routines, QUEUE.CHECK and STAY.TIME, are associated

with the BEFORE statements of the preamble. QUEUE.CHECK is called

before filing or removing is done in any QUEUE; STAY.TIME is called

before any JOB is destroyed. The sole purpose of QUEUE.CHECK is

error checking; its code is straightforward. STAY.TIME has a

different purpose. It computes the time a Job spends in the shop,

assigning this time to a variable that will have a TALLY operation.

Note that STAY is used to compute statistics through

-22-

its TALLY computations, but as it is not used anywhere else in the

program, it is declared DUMMY and given no storage location.

TRACE is more complicated. Triggered by a call from BETWEEN.V

before every event, it is used to trace events and to release jobs

from finished goods inventory when the simulation clock reaches

their due date. The first part of the routine deals with this task.

The code makes use of the fact that jobs are ranked in FINISHED.GOODS.

INVENTORY in order of their DUE.DATE.

The trace section of the program uses EVENT.V to branch to a

dif•erent output statement according to the type of event that has

been selected to occur next. These output statements print different

items of information about each event type. The program could as

easily be written to take actions on the event types, such as turning

off the trace by setting BETWEEN.V-O when TIME.V reaches a certain

value or a special kind of event occurs.

Routine NUMBER.IDLE is a left-handed routine that implements

the monitoring of the attribute NUMBER.IDLE. It has several unusual

features. One reason for defining NUMBER.IDT.E as a left-hand monitored

variable is to save values of the number of machines idle over time

for later processing, without putting the code to do this in the

simulation routines. To remove this feature from the program at some

later date, one need only remove the preamble card that states that

NUMBER.IDLE is monitored and the routine NUMBER.IDLE, and recompile

the program. No changes need be made to any other routines.

The program uses two SAVED local arrays to collect and write on

tape successive values of NUMBER.IDLE for each production

center. A global variable TAPE.FLAG is used to tell the routine

when initialization of the SAVED local variables is required; TAPE

FLAG is set to zero at the start of every simulation experiment.

The routine demonstrates SAVED values, local arrays, a left-handed

function, subscripted subscripts, and monitored variables.

The last routines deal with reports of system activity during

a simulation experiment. They print out the parameters of the

experiment and the measurements made during the experiment. They

illustrate the report generating facilities of SIHSCRIPT II as well

as the COMPUTE statement.

